
CO148 | Page Layout | C. Kautz

Unit H: Implementing Page Layout
with HTML and CSS
In Unit H, you will learn how to create professional Web page designs using multicolumn layouts. Before
creating these fancier layouts, a Web page designer needs to understand (1) the CSS Box Model; (2) how
the browser naturally flows HTML elements and content onto the page. After we learn about these two,
then we’ll create layouts using two different methods: Floats and Positioning.

CO148 | Page Layout | C. Kautz

Table of Contents

Box Model --- 1

 Content -- 2

 Padding -- 2

 Border -- 3

 Margins -- 3

Flow --- 4

 Block-Level ---4, 5

 Inline --6, 7

 Margins for Block-Level and Inline Elements --8, 9

Constructing a Multicolumn Layout --- 10 – 12

 Float -- 13 – 18

Liquid, Frozen, and Jello Layouts --- 19

 Liquid (Fluid) Layout -- 19

 Frozen Layout -- 19

 Jello Layout --- 20 - 25

Positioning -- 26

 Absolute Positioning -- 26 - 30

 Z-Indexes -- 27 – 29

 Fixed Positioning--- 31 - 32

 Relative Positioning --- 33 - 34

CO148 | Page Layout | C. Kautz Page 1 of 34

Box Model
It is important to understand the Box Model before creating multicolumn layouts. Pages 186 and 187 in
your book provide good information about the box model. Read and study these pages. Below is a
summary of the box model, along with some details in addition to what is in the book.

CSS treats every element on a Web page as a box; paragraphs, headings, lists, even links, and the inline
 element.

• Every box is made up of a content area, along with optional padding, border, and margins.
• The content area holds the content, such as text, an image, links, lists, etc.
• The padding is optional and transparent.
• The border is optional and can be seen.
• The margin is optional and transparent.

content

border
padding

margin

CO148 | Page Layout | C. Kautz Page 2 of 34

CONTENT
Since CSS treats every element as a box, the content is placed inside a box that is just big enough to hold
it. The content has no extra spaces between the content and the edge of the box.

In the browser, there is no visible edge. The dashed line shown above is so you can see the size of the
content area.

PADDING
The Padding is optional and transparent. It has no color or decoration of its own. Padding can be used
to add whitespace around the content. Whitespace is often used as part of design. The Padding has up
to four values to specify spacing; top, right, bottom and left. See page 418, Appendix B, in the back of
your book and page 187 for padding properties (names) and values. Note the shorthand examples in
your book as it is easier and faster to write, however it may be a little more challenging to debug when
problems occur.

In the browser, there is no visible edge. The dashed line shown above is so you can see the size of the
padding area.

Lorem ipsum dolor sit amet, consetetur
sadipscing elitr, sed diam nonumy eirmod
tempor invidunt ut labore et dolore magna
aliquyam erat, sed diam voluptua. At vero eos
et accusam et justo duo dolores et ea rebum.
St t lit k d b t ki t

Lorem ipsum dolor sit amet, consetetur
sadipscing elitr, sed diam nonumy eirmod
tempor invidunt ut labore et dolore magna
aliquyam erat, sed diam voluptua. At vero eos
et accusam et justo duo dolores et ea rebum.
St t lit k d b t ki t

padding

CO148 | Page Layout | C. Kautz Page 3 of 34

BORDER
Borders are optional and visible. The border has three values: width, style, and color. See page 417,
Appendix B, in the back of your book and page 187 for border properties (names) and values. Note the
shorthand examples in your book as it is easier and faster to write, however it may be a little more
challenging to debug when problems occur.

MARGINS
The Margin is optional and transparent. Like padding, it has no color or decoration of its own. Margins
can be used to add space around elements on the same page. The Margin has up to four values to
specify spacing; top, right, bottom and left. See page 418, Appendix B, in the back of your book and page
187 for margin properties (names) and values. Note the shorthand examples in your book as it is easier
and faster to write, however it may be a little more challenging to debug when problems occur.

When the browser flows HTML elements, shared margins are collapsed when two block-level elements
are placed on top of each other. The element with the largest margin is the only margin that is used.
You’ll learn more about this shortly (page 8), when learning about how the browser flow HTML
elements. It is important to understand how the browser flows HTML elements, before you can
effectively create layouts.

Lorem ipsum dolor sit amet, consetetur
sadipscing elitr, sed diam nonumy eirmod
tempor invidunt ut labore et dolore magna
aliquyam erat, sed diam voluptua. At vero eos
et accusam et justo duo dolores et ea rebum.
St t lit k d b t ki t

padding
border

Lorem ipsum dolor sit amet, consetetur
sadipscing elitr, sed diam nonumy eirmod
tempor invidunt ut labore et dolore magna
aliquyam erat, sed diam voluptua. At vero eos
et accusam et justo duo dolores et ea rebum.
St t lit k d b t ki t

padding

margin
border

CO148 | Page Layout | C. Kautz Page 4 of 34

Flow
Flow is what the browser uses to lay out block and inline HTML elements in a Web page. Understanding
how the browser naturally flows elements is important before you can attempt to change the flow and
create professional looking multicolumn layouts. Unit H in the book does not include much information
about flow, therefore I included a complete explanation and examples here.

The browser flows block-level elements differently than inline elements. The distinction of block-level
and inline is used in HTML specifications up to 4.01. In HTML5, block-level and inline are replaced with a
more complex set of content categories:
(http://raider.grcc.edu/~ckautz/grcc/tips/html/models.html).The HTML 4.0.1 block-level roughly
corresponds to the HTML5 category of flow content and HTML 4.0.1 inline roughly corresponds to the
HTML5 category of phrasing content, along with additional categories.

For the purpose of a simplified explanation of how the browser flows HTML elements, I will use block-
level and inline, even though the terms are not technically defined for the new HTML5 elements.

BLOCK-LEVEL (roughly equates to flow in HTML5)
The browser flows the elements from the top of the HTML page, to the bottom, displaying each
element it encounters. Their most significant characteristic is that they typically are formatted with a
line break before and after the element (thereby creating a stand-along block of content) .

Below is an example of block-level elements in use. The left side is the code in a text editor, the right
side is how it looks in a browser. Notice the line break before and after each block-level element
(header, p, section).

http://raider.grcc.edu/~ckautz/grcc/tips/html/models.html

CO148 | Page Layout | C. Kautz Page 5 of 34

The above list of block-level elements obtained from:
 https://developer.mozilla.org/en/HTML/Block-level_elements

Also see: http://www.tutorialchip.com/tutorials/HTML5-block-level-elements-complete-list/

Note: div is a generic block-level element that has no special meaning. It is used to mark general block-
level content.

https://developer.mozilla.org/en/HTML/Block-level_elements
http://www.tutorialchip.com/tutorials/html5-block-level-elements-complete-list/

CO148 | Page Layout | C. Kautz Page 6 of 34

INLINE (roughly equates to phrasing content in HTML5)
The browser flows the elements next to each other, horizontally, from top left to bottom right. Inline
elements do not start out on a new line of block, but instead flow “inline” with the rest of the content in
the block.

Below is an example of inline elements in use. The left side is the code in a text editor, the right side is
how it looks in a browser. Notice how the elements are laid next to one another horizontally (text ,
strong, and the img elements).

CO148 | Page Layout | C. Kautz Page 7 of 34

The following is a complete list of all HTML inline elements (although “inline” is not technically defined
for elements that are new in HTML5).

The above list of inline elements obtained from:
http://www.tutorialchip.com/tutorials/inline-elements-list-whats-new-in-HTML5/

Note: span is a generic inline element that has no special meaning. It is used to mark general inline
content.

http://www.tutorialchip.com/tutorials/inline-elements-list-whats-new-in-html5/

CO148 | Page Layout | C. Kautz Page 8 of 34

MARGINS FOR BLOCK-LEVEL AND INLINE ELEMENTS
Back on page 3 you learned about margins in the Box Model . Margins are optional, transparent and can
be used to add space around elements. The browser lays out block and inline elements differently when
margins are involved. These differences are important to know as they will affect your layouts.

BLOCK ELEMENTS AND MARGINS

When the browser flows HTML elements, shared margins are collapsed when two block-level elements
are placed on top of each other. The element with the largest margin is the only margin that is used.

For example, if the top element’s bottom margin is 10px, and the bottom element’s top margin is 20 px,
then the collapsed margin will be 20 pixels.

When two
block
elements
are placed
on top of
each other,
the
browser
will
collapse the
margins.

The shared
margin is
the size of
the larger
of the two
margins.

Shared collapsed margin 20
 top margin is 20 px

bottom margin is 10 px

CO148 | Page Layout | C. Kautz Page 9 of 34

INLINE ELEMENTS AND MARGINS

When the browser flows HTML elements, shared margins are left alone when inline elements are placed
side by side. Of course the elements are side by side, because they are “inline.” Remember, inline flows
horizontally, from top-left to bottom-right. The browser does not put a line break above and below the
elements.

Note: You probably will not set the margins for inline elements often. The one exception is
images. It is very common to set margins, borders and padding on images.

CO148 | Page Layout | C. Kautz Page 10 of 34

Constructing a Multicolumn Layout
With an understanding of the box model and flow, we now have the foundations needed to build
multicolumn layouts. There are two methods to build multicolumn layouts. We will start with Floats
first, and then move on to Positioning.

Download the provided files in Bb. Files include: index.html, layout.css and an image folder containing 5
images. Open the index.html file in your browser. Next, open the index.html and layout.css in your text
editor.

Below is the Web page as it looks now. What we want to do is create a two column layout underneath
the photo. Take a look at the Web page here and then the markup and CSS that’s styling it on the next
couple pages.

The nature project is
just a gif image and
the photo a jpg; both
images are contained
inside of a header.

This list of Sponsors is
inside of an aside
container with a
background color.

The main content is
inside of an article
congainer with a
background color.

The footer is inside of
footer container with
a background color.

CO148 | Page Layout | C. Kautz Page 11 of 34

HTML MARKUP

Each logical section is a descriptive HTML5 tag: header, aside, article and footer. These semantic
elements help user agents understand the content of the page.

The nature project is
just a gif image and
the photo a jpg; both
images are contained
inside of header tags.

This list of Sponsors is
inside of an aside tag
with a background
color.

The main content is
inside of an article
tag with a
background color.

The footer is inside of
footer tag with a
background color.

CO148 | Page Layout | C. Kautz Page 12 of 34

THE STYLE RULES

Below is the CSS that is use to style the page.

The body background
color, font and
margins are set here.
Margin of 0 makes
sure there is no extra
space between the
body of the page on
the browser edge.

Each logical section
for header, article,
aside (already given a
unique id of
rightcolumn), and
footer.

The word “Sponsor”
in the aside container
was given a class of
bold and a couple of
declarations to make
it stand out and align
closer to the top.

We’ll get to the tree
rule later.

CO148 | Page Layout | C. Kautz Page 13 of 34

FLOAT
The way floats work are closely tied to how the browser flows elements on to the page. You learned
about flow on the previous pages. The float property floats an element to the far left or right. It then
flows all the content below or around the element. See page 418, Appendix B, in the back of your book
for float property (name) and values.

Now that you have taken a look at the markup, lets create two columns and float the aside container,
with the list of sponsors, to the right. Steps 1 and 2 below already have been done for you. Complete
steps 3 and 4 in the CSS file, save, and then refresh your browser.

Four basic steps to create a float:

HTML: 1. Give the element you’re going to float a unique name using an id.
2. Make sure the element’s HTML is just below the element you want to float under; in

this case, the header.
CSS: 3. Set the width of the element. Any element you wish to float must have a width.
 4. Float the element to the right or left. The only values for a float are right or left

Step 1: Element is
given a unique id of
rightcolumn. I
already did this and
you saw the id on the
previous pages.

Step 2: The aside is
just below the
element that we
want to float under,
in this case, header.

Step 3: Set the width.

Step 4: Float it.

CO148 | Page Layout | C. Kautz Page 14 of 34

THE RESULTS

Resize your browser so that it appears as shown below. After setting the width and float for the
rightcolumn on page 13, the rightcolumn is moved as far as possible to the right below the header, and
is also removed from the normal flow; it now floats (See below. I added a shadow to the screen capture
to more visually demonstrate the float). Everything else below the rightcolumn in the HTML is going to
move up and around it (compare to the screen capture on page 10).

The article (How you can help our cause) is a block element and moves underneath the rightcolumn
(Sponsors). The text are inline elements and they respect the boundaries of the rightcolumn.

Key points:

• Block elements ignore floating elements. The block element, article, ignores the floating
rightcolumn and extends underneath the rightcolumn.

• An inline element, the text here, knows the floating rightcolumn is there and respects the
rightcolumn boundaries.

Issues with floating the rightcolumn to the right:

• There is no separation between the two columns. You cannot see the darker background
between the two columns as the article block-level element is extending all the way to the right
and underneath the rightcolumn.

• When the browser window is resized smaller, the text in the article wraps around and under the
rightcolumn as shown above.

Content in article
container
extends
underneath the
floating
rightcolumn
container with
the list of
sponsors. Since
the text in the
article container
are inline
elements, they
respect the
boundaries of
the rightcolumn

rightcolumn
container is
floating on the
page. It is not in
the normal flow.

CO148 | Page Layout | C. Kautz Page 15 of 34

• When the browser window is resized larger, the article and rightcolumn extend beyond the
header above. We’ll look at an alternative layout layer to fix this particular problem.

Solution to create the illusion of two columns

I revised the right margin of the article block element to be at least the size of the rightcolumn (250px),
and then I added a little more to account for margins. For the heck of it, I also doubled the list of
sponsors in the rightcolumn HTML to demonstrate another issue you’re about to see. Revise the
markup as shown in the yellow highlights below, save, and then refresh your browser.

CO148 | Page Layout | C. Kautz Page 16 of 34

THE RESULTS #2

After revising the right margin width of the article and adding to the list of sponsors in the rightcolumn,
below are the results.

Key points:

• The article is still extending underneath the rightcolumn and taking up the width of the
browser window (because that’s what block elements do), but the article now has a right margin
at least as wide as the rightcolumn to reduce the width of the content within it.

• Margins are transparent (see page 3 for margins), so the darker background shows through,
creating the illusion of two columns.

• The rightcolumn is still floating (I added a bit of a shadow on the screen capture to remind you)
and is ignored by block elements.

Issues:

• The footer, a block element (see page 5), extends underneath the floating rightcolumn and
takes up the width of the browser window. The floating rightcolumn appears on top of the
footer. Remember, block elements ignore floating elements. The footer is ignoring the
rightcolumn.

• When the browser window is resized larger, the article and rightcolumn extend beyond the
header above. Again, we’ll look at an alternative layout later to fix this particular problem.

CO148 | Page Layout | C. Kautz Page 17 of 34

Solution for the rightcolumn overlapping onto the footer

Since the rightcolumn has been removed from the flow and is floating, the browser lays out the article
and footer block elements like it normally would, ignoring the rightcolumn (remember though that
when the browser flows inline elements, it will respect the borders of the floating rightcolumn and wrap
inline elements , in this case text and an image, around it).

The CSS clear property solves this issue. When this property is set on an element, no floating elements
are allowed to be on the left, right or both sides of an element. We’ll use the clear property on the
footer to tell the browser to let no floating elements to the right of it. Revise the CSS as shown in the
yellow highlights below, save, and then refresh your browser.

THE RESULTS #3

After clearing the float on the right, the floating rightcolumn is no longer allowed on the right side of the
footer, below are the results.

CO148 | Page Layout | C. Kautz Page 18 of 34

Key point:

• When the browser places the elements on the page, it looks to see if there is a floating element
to the right side of the footer, and if there is, it moves the footer down until there is nothing on
its right. No matter how wide you open the browser, the footer will always be below the
rightcolumn.

Issues:
• The column heights now look different. We could make each column extend down to meet the

footer by adding a name value pair of height: 250 for each the article and rightcolumn.
Sometimes it is just a matter of playing around with the CSS and HTML until you achieve the
results you want.

• We still have the problem that when the browser window is resized larger, the article and
rightcolumn extend beyond the header above them. Next, we’ll look at an alternative layout to
fix this particular problem.

• Another issue in the way the page was designed is the order in which the rightcolumn and
article were placed in the HTML (refer back to page 11). Within the body, the header is first,
then the rightcolumn and then the article. Anyone with a browser that has limited capabilities
(PDAs, mobile phones, screen readers, etc.) will see the page in the order it is written in the
HTML, with the list of sponsors in the rightcolumn first. The article, the much more important
part, should be displayed first.

CO148 | Page Layout | C. Kautz Page 19 of 34

LIQUID, FROZEN, AND JELLO LAYOUTS

Liquid Layout (also called Fluid Layout)

On the previous pages, the design was a liquid layout (also see below). The content filled the browser
window at any size. This design takes advantage of all the available space, but layout can be more of a
challenge to control, especially for inexperienced Web designers. Look at amazon.com for another
example of a liquid layout.

Frozen Layout

Everything is locked down on the page and when a user resizes the browser window; your design will
look as it should (see below). However, there is a lot of empty space on the right that makes it look bad.

CO148 | Page Layout | C. Kautz Page 20 of 34

Jello Layout

Jello is between liquid and frozen (see below). It locks down everything on the page like frozen, but
centers the content in the browser. The left and right margins, around the content expand to fill the
browser window like liquid. Jello is a popular layout on the Web and easier to control than liquid. Look
at craigslist.com or my site at ckautz.org for additional examples of a jello layout.

Next, we will create a Jello Layout, but first a couple of tweaks are necessary.

CO148 | Page Layout | C. Kautz Page 21 of 34

Solution for the uneven column heights and the incorrect order of HTML elements

In the screen capture on page 20, I already employed the jello layout. I also corrected the issue with the
uneven column heights (as shown on page 17) and the incorrect order of the article and rightcolumn
elements, as mentioned on page 18. Screen readers and browsers with limited capabilities, will read the
HTML as it appears in the markup. We don’t want the rightcolumn about sponsors to appear before the
important content in the article.

Below is how I revised the markup to correct the column height and HTML order. Revise the markup as
shown in the yellow highlights below and then save. It won’t look right in the browser at the moment,
but keep going and we’ll fix it.

CSS HTML

Property and value for height added to article moved just below the header and the
article and right column. rightcolumn moved under the article. Cut / paste your

markup so that it looks as shown below.

CO148 | Page Layout | C. Kautz Page 22 of 34

Jello Layout

Next we’ll make the page a Jello layout so that it appears as shown on page 20. First a couple of
additional revisions:

1. Remember the four basic steps to create a float on page 13? Step 2 stated: make sure the
element’s HTML is just below the element you want to float under; in this case, the header.
After we moved our HTML in the correct order, the article is now directly below the header.
This means we need to float the article to the left and remove the float for the rightcolumn. See
below.

2. Step 1 on page 13 stated: give the element you need to float a unique name using an id.
Therefore, we’ll need to give the article a unique id. You can use any id that you want. I’ll use
leftcolumn as it is descriptive. We no longer need the id for the rightcolumn in the aside tag,
and so we’ll remove it. See below.

Revise your HTML markup as shown below. rightcolumn is removed. leftcolumn is added. You
want your markup to look as shown on the right for “After revision.” Don’t refresh your browser
yet as it still is not ready.

 Before revision After revision

<article>
…
</article

 <article id=”leftcolumn”>
….
</article>

<aside id=”rightcolumn”>
…
</aside>

<aside>
…
</aside>

CO148 | Page Layout | C. Kautz Page 23 of 34

Next, revise the CSS to reflect the changes in the HTML. Revise the selectors and properties as
highlighted below. article is changed to #leftcolumn, #rightcolum is changed to aside. You want your
CSS to look as shown on the right for “After revisions.” Save your work, but still not ready yet to refresh
the browser.

 Before revisions After revisions

article {
 background-color: #FFEEB6;
 padding: 15px;
 margin: 0px 300px 10px 10px;
 height: 250px;
 }

#leftcolumn {
 background-color: #FFEEB6;
 padding: 15px;
 margin: 0px 10px 10px 10px;
 height: 250px;
 width: 500px;
 float: left;
 }

#rightcolumn {
 background-color: #FFEEB6;
 padding: 15px;
 margin: 0px 10px 10px 10px;
 width: 250px;
 float: right;
 height: 250px;
 }

aside {
 background-color: #FFEEB6;
 padding: 15px;
 margin: 0px 10px 10px 550px;
 width: 250px;
 float: right;
 height: 250px;
 }

*The aside will now flow under the
leftcolumn content, and so we need to
move the large left margin to the aside.
The total width of the leftcolumn is 500.
The leftcolumn also has 10px of margin
on each side + 15px of padding on each
side = 550px.

The fixed width and float will now
be on the leftcolumn, and so we
need to remove it from the aside.

*We don’t need the wide right
margin anymore. It is changed back
to 10.

Float the leftcolumn to the left. 500
is an arbitrary number I picked. I just
want the leftcolumn bigger than the
aside with the Sponsors.

*If you wondering how you know which
value is the top, right, bottom, or left,
refer to the shorthand examples on page
187 in your book.

CO148 | Page Layout | C. Kautz Page 24 of 34

Jello layout continued . . .

Since the leftcolumn is now going to float to the left, we need to adjust the footer to clear everything to
the left, rather than the right.

footer {
background-color: #403B2D;
color: #E5D6A3;
text-align: center;
padding: 15px;
margin: 10px;
font-size: 90%;
clear: left;
}

Now that all the revisions are complete, we need to add a new, generic <div> element with the id of
“wrapper”. You can use any id you wish. I choose this one because it “wraps” all the content. Place the
<div> tag after the opening <body> tag and before the closing </body> tag.

<body>
 <div id=”wrapper”>
 . . . all HTML here
 </div>
</body>

Next, we’ll limit the <div> to 890px to constrain the size of all the elements and content in the
“wrapper” . Add the CSS rule:

#wrapper {
 width: 890px;
 margin-left: auto;
 margin-right: auto;
 }

Okay, save all your work and NOW refresh your browser. Your page should now look as shown on page
25. Trouble? Go back and check your markup. One missed semi-colon or # or closing bracket, etc. could
affect the entire layout.

The “auto” value for margins lets the
browser figure out the correct margins,
making sure they are the same so that
the content is centered.

I used 890px fixed width here, but many
designers like to use a popular 960px
width. See page 198 in your book for
“Determining page widths.”

CO148 | Page Layout | C. Kautz Page 25 of 34

Completed Jello Layout

Below is the completed Jello layout, the same as shown on page 20. I just added a shadow on the
screen capture of the leftcolumn here to be sure you understand that this is the area that is now
floating. The aside with the Sponsors is now extending underneath the leftcolumn. The text in the aside
are inline elements, which respect the boundaries of the floating leftcolumn. Therefore, the text does
not go underneath the floating leftcolumn.

What if you wanted to create a three column layout? For the left column, float it to the left. For the right
column, float it to the right. For the middle column, add left and right margins that sit under the two
floating elements. For the footer at the bottom of the page, be sure to add the clear: both name value
pair so that no elements will be allowed to the left or to the right of the footer. Keep this in mind as an
idea for your Final at the end of the semester.

CO148 | Page Layout | C. Kautz Page 26 of 34

POSITIONING
The Positioning property can be used to create the same layout as was done with floats. We’ll create
the Jello layout as shown on page 25, except use the Position property instead. Not much editing is
needed. We will start with Absolute Positioning (along with z-index), and then take a look at Fixed and
Relative Positioning.

ABSOLUTE POSITIONING

For the leftcolumn add the position and top properties as shown below. Remove the float property as
we are no longer using it. Revise the markup as shown in the yellow highlights below, save, and then
refresh your browser. Everything should look the same.

Since we removed the float property from the leftcolumn, we also remove the clear from the footer.
Flowed elements do not know about absolute elements, therefore clear means nothing for positioning.
Bottom line: when using position instead of float for layout, you do not need clear.

The result should look the same as the completed Jello Layout created with floats on page 25. The
leftcolumn is floating with Positioning, the same as it was with Floats.

Key points:

• The aside column with the Sponsors has a left margin of 550px to force it further to the right,
otherwise, it would appear underneath the leftcolumn as the leftcolumn is floating. Try it.
Change the left margin of the aside from 550px to 10px and see what happens, then change it
back again.

• The leftcolumn is 314px from the top of the browser window
(header height of 294px + 10px of margin on the top and bottom = 314px).

clear: left
 removed from footer rule.

CO148 | Page Layout | C. Kautz Page 27 of 34

• The default for positioning is static, which places the element in the normal flow. The browser
decides where to put it, not you.

• You can absolutely position any block or inline element; however it is much more common to
position block elements. One exception for inline is the img element.

• Width for absolutely positioned elements does not have to be specified, but you will likely want
to do so for greater control.

• Pixels were used to position elements in the above example, but you may use percentages
instead. With percentages, the positions of your elements may appear to change as you change
the width of the browser window. For example, if your browser is 800 pixels wide, and your
element’s left position is set to 10%, then your element will be 80 pixels from the left of the
browser window. If your browser is instead resized to 400 pixels wide then the width will be
reduced to 10% of 400 pixels, or 40 pixels from the left of the browser window.

Z-INDEXES

Z-indexes are often used with Absolute Positioning. It is used to determine the stacking order of
absolutely positioned elements on a Web page.

We’ll make a couple of changes to the tree image to see how this works. The tree image has been
floating to the right side of the leftcolumn. We’ll pull it out of the leftcolumn and then position it
absolutely to demonstrate how z-indexes work.

1. First, in the HTML page, move the inline span element, with the id tree, from its current position
below the leftcolumn , to above the leftcolumn as shown below. Add paragraph tags around
the span element (the </p> tag is out of view here, but be sure to add it).

Note: according to W3C, inline elements (span in this case) cannot be placed directly inside the
body element; they must be wholly nested within block-level elements. The <p> tag is a block-
level element and that is why we added the <p> element around the span element.

CO148 | Page Layout | C. Kautz Page 28 of 34

2. Next, in the CSS, remove the current name value pair for the tree rule, and replace with the
following:

The tree img will be positioned 510px from the top edge of the page and 605px from the left
edge of the page. After revising the tree rule, save, and then refresh your browser.

3. Resize your browser just right so that the tree img element looks as shown below. The
absolutely positioned img appears underneath the absolutely positioned leftcolumn. The img
element has a lower stacking order and appears underneath the leftcolumn. Some browsers
will give the img element a lower z-index than the leftcolumn.

4. To fix this problem, add the z-index property as shown below:

The number 99 was added to make sure the tree is always stacked on top. It doesn’t matter
what number you use, as long as it is higher than any other absolutely positioned element on
the page. The element with the higher number is always positioned on top of the element with
a lower number (or no number). In this case, we’re making sure the tree element is stacked
above the absolutely positioned leftcolumn.

CO148 | Page Layout | C. Kautz Page 29 of 34

5. Save your work and refresh your browser. Below are the results after the z-index was added to
the tree rule:

What would happen if the tree image was INSIDE of the absolutely positioned leftcolumn? Let’s find
out.

1. First, in the HTML page, move the inline span element, with the id tree, back to its original
position; below the leftcolumn. Remove the paragraph tags around the span element. <p> tags
are no longer needed as the inline span element is now inside the block-level article. Revise the
markup as shown in the yellow highlights below.

2. After saving your revision, refresh your browser. Where did the tree image go? When you
position an element, you’re specifying the position relative to the closest ancestor element that
is also positioned. Since we moved the absolutely positioned tree image inside of the absolutely
positioned leftcolumn, the tree image element is positioned relative to the leftcolumn element
(the ancestor). The tree image is positioned 510px from the top of the leftcolumn and 605px
from the left of the leftcolumn, completely out of view!

Note: when the tree image was outside of the leftcolumn element, the tree was positioned
relative to the <HTML> element, which was the top and left of the browser window.

CO148 | Page Layout | C. Kautz Page 30 of 34

3. To solve the problem, revise the top and left values in the tree rule. The values are adjusted
from the top and left of the absolutely positioned leftcolumn, NOT the edge of the page. I
determined the values below by simple trial and error until I had the position I preferred. Revise
the tree rule as shown below in the yellow highlights, save, and then refresh your browser.

4. Below are the results after the values have been revised:

top: 5px
Measured from the top of
the leftcolumn.

left: 465px
Measured
from the left
of the
leftcolumn.

CO148 | Page Layout | C. Kautz Page 31 of 34

FIXED POSITIONING

Fixed Positioning allows you to place an element on the page and the element won’t move, even if you
scroll the page. To see how it works, we will add a donate image to the page that a user can click to
donate money to the nature project.

1. First, add the following markup just above the footer in the HTML page. It is inserted above the
footer here, but it does not really matter where in the HTML it is placed, unless the browser
does not support positioning. The element is not the most important on the page, and so it will
be placed near the bottom.

Note: according to W3C, inline elements (img in this case) cannot be placed directly inside the
body element; they must be wholly nested within block-level elements. The generic <div> is a
block-level element and that is why we added the <div> around the img element. We also
needed to give the element a unique id.

2. Next, add the following rule to the CSS:

After revising the markup as shown above, save, and then refresh your browser.

CO148 | Page Layout | C. Kautz Page 32 of 34

3. The fixed positioned donate image appears in the same place, regardless of the browser size or
if the user scrolls. Resize the browser to a smaller window and scroll. Note the fixed position of
the donate image.

4. Use a negative left property value to make it look like the coupon is partially off the left side of
the screen. Change the left value from 0px to -30 and see what happens!

CO148 | Page Layout | C. Kautz Page 33 of 34

RELATIVE POSITIONING

Relative Positioning is not used as often as the others, but is still worth mentioning. Unlike absolute and
fixed positioning, an element that is relatively positioned is still part of the flow of the page, but at the
last moment, just before the element is displayed, the browser offsets its position.

So, the element still takes up the same spot on the page, it’s just displayed in a different location. The
spot that it is actually taking up looks empty. In order words, the original location is preserved.

1. To see this first hand, add the following to your HTML page. Also, remove the last 6 sponsors in
the unordered list as they are duplicates that were used in a previous example. Save your
file and refresh your browser window.

2. Look at how the image appears in the browser, before the CSS is applied. This is its original
location before we add the offset.

Delete the duplicate
list of sponsors, the
last 6.

CO148 | Page Layout | C. Kautz Page 34 of 34

3. Next, add the CSS rule as shown below, save the file, and then refresh your browser again.

4. Look at how the page appears, after the CSS is applied. We specified that the thank you image
should be displayed 220px from the left of where it sits in the flow of the document.

Note: you can use right, top and bottom properties too; not just left. On page 190 in your book,
the only properties listed are top and left.

Your completed work should look as shown on the next page.

Save your work, then submit files as instructed in Bb for Unit H.

The element still takes up
the same spot on the page,
it’s just displayed in a
different location. The
original location looks
empty and it’s space is
preserved.

CO148 | Page Layout | C. Kautz

	Unit H: Implementing Page Layout with HTML and CSS
	Table of Contents
	Box Model
	Content
	Padding
	Border
	Margins

	Flow
	Block-Level (roughly equates to flow in HTML5)
	Inline (roughly equates to phrasing content in HTML5)
	Margins for block-level and inline elements

	Constructing a Multicolumn Layout

